Define SNP thresholds for delineation of tuberculosis transmissions using whole-genome sequencing
For facilitating tuberculosis (TB) control, we used a whole-genome sequencing (WGS)-based approach to delineate transmission networks in a country with an intermediate burden of TB. A cluster was defined as isolates with identical genotypes, and an outbreak was defined as clustered cases with epidem...
Gespeichert in:
Veröffentlicht in: | Microbiology spectrum 2024-08, Vol.12 (8), p.e0041824 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For facilitating tuberculosis (TB) control, we used a whole-genome sequencing (WGS)-based approach to delineate transmission networks in a country with an intermediate burden of TB. A cluster was defined as
isolates with identical genotypes, and an outbreak was defined as clustered cases with epidemiological links (epi-links). To refine a cluster predefined using space oligonucleotide typing and mycobacterial interspersed repetitive unit variable tandem repeat typing, we analyzed one pansusceptible TB (C1) and three multidrug-resistant (MDR)-TB (C2-C4) clusters from different scenarios. Pansusceptible TB cluster (C1) consisting of 28 cases had ≤5 single nucleotide polymorphisms (SNPs) difference between their isolates. C1 was a definite outbreak, with cases attending the same junior high school in 2012. Three MDR-TB clusters (C2-C4) with distinct genotypes were identified, each consisting of 12-22 cases. Some of the cases had either ≤5 or ≤15 SNPs difference with clear or probable epi-links. Of note, even though WGS could effectively assist TB contact tracing, we still observed missing epi-links in some cases within the same cluster. Our results showed that thresholds of ≤5 and ≤15 SNPs difference between isolates were used to categorize definite and probable TB transmission, respectively. Furthermore, a higher SNP threshold might be required to define an MDR-TB outbreak. WGS still needs to be combined with classical epidemiological methods for improving outbreak investigations. Importantly, different SNP thresholds have to be applied to define outbreaks.
TB is a chronic disease. Depending on host factors and TB burden, clusters of cases may continue to increase for several years. Conventional genotyping methods overestimate TB transmission, hampering precise detection of outbreaks and comprehensive surveillance. WGS can be used to obtain SNP information of
to improve discriminative limitations of conventional methods and to strengthen delineation of transmission networks. It is important to define the country-specific SNP thresholds for investigation of transmission. This study demonstrated the use of thresholds of ≤5 and ≤15 SNPs difference between isolates to categorize definite and probable transmission, respectively. Different SNP thresholds should be applied while a higher cutoff was required to define an MDR-TB outbreak. The utilization of SNP thresholds proves to be crucial for guiding public health interventions, eliminating the need for unnecessa |
---|---|
ISSN: | 2165-0497 2165-0497 |
DOI: | 10.1128/spectrum.00418-24 |