Photonic resource state generation from a minimal number of quantum emitters
Multi-photon entangled graph states are a fundamental resource in quantum communication networks, distributed quantum computing, and sensing. These states can in principle be created deterministically from quantum emitters such as optically active quantum dots or defects, atomic systems, or supercon...
Gespeichert in:
Veröffentlicht in: | npj quantum information 2022-02, Vol.8 (1), p.1-7, Article 11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Multi-photon entangled graph states are a fundamental resource in quantum communication networks, distributed quantum computing, and sensing. These states can in principle be created deterministically from quantum emitters such as optically active quantum dots or defects, atomic systems, or superconducting qubits. However, finding efficient schemes to produce such states has been a long-standing challenge. Here, we present an algorithm that, given a desired multi-photon graph state, determines the minimum number of quantum emitters and precise operation sequences that can produce it. The algorithm itself and the resulting operation sequence both scale polynomially in the size of the photonic graph state, allowing one to obtain efficient schemes to generate graph states containing hundreds or thousands of photons. |
---|---|
ISSN: | 2056-6387 2056-6387 |
DOI: | 10.1038/s41534-022-00522-6 |