Computational modeling of the bacterial self-organization in a rounded container: The effect of dimensionality

A bacterial self-organization in a rounded container as detected by bioluminescence imaging is mathematically modeled by applying the the Keller–Segel approach with logistic growth. The pattern formation in a colony of luminous Escherichia coli is numerically simulated by the nonlinear reaction-adve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis (Vilnius, Lithuania) Lithuania), 2015-10, Vol.20 (4), p.603-620
Hauptverfasser: Baronas, Romas, Ledas, Žilvinas, Šimkus, Remigijus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bacterial self-organization in a rounded container as detected by bioluminescence imaging is mathematically modeled by applying the the Keller–Segel approach with logistic growth. The pattern formation in a colony of luminous Escherichia coli is numerically simulated by the nonlinear reaction-advection-diffusion equations. In this work, the pattern formation is studied in 3D and the results are compared with previous and new 2D and 1D simulations. The numerical simulation at transition conditions was carried out using the finite difference technique. The simulation results showed that the developed 3D model captures fairly well the sophisticated patterns observed in the experiments. Since the numerical simulation based on the 3D model is very time-consuming, the reduction of spatial dimension of the model for simulating 1D spatiotemporal patterns is discussed. Due to the accumulation of luminous cells near the top three-phase contact line the experimental patterns of the bioluminescence can be qualitatively described by 1D and 2D models by adjusting values of the diffusion coefficient and/or chemotactic sensitivity.
ISSN:1392-5113
2335-8963
DOI:10.15388/NA.2015.4.10