End-to-End Emulation of LoRaWAN Architecture and Infrastructure in Complex Smart City Scenarios Exploiting Containers
In a LoRaWAN network, the backend is generally distributed as Software as a Service (SaaS) based on container technology, and recently, a containerized version of the LoRaWAN node stack is also available. Exploiting the disaggregation of LoRaWAN components, this paper focuses on the emulation of com...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2024-04, Vol.24 (7), p.2024 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a LoRaWAN network, the backend is generally distributed as Software as a Service (SaaS) based on container technology, and recently, a containerized version of the LoRaWAN node stack is also available. Exploiting the disaggregation of LoRaWAN components, this paper focuses on the emulation of complex end-to-end architecture and infrastructures for smart city scenarios, leveraging on lightweight virtualization technology. The fundamental metrics to gain insights and evaluate the scaling complexity of the emulated scenario are defined. Then, the methodology is applied to use cases taken from a real LoRaWAN application in a smart city with hundreds of nodes. As a result, the proposed approach based on containers allows for the following: (i) deployments of functionalities on diverse distributed hosts; (ii) the use of the very same SW running on real nodes; (iii) the simple configuration and management of the emulation process; (iv) affordable costs. Both premise and cloud servers are considered as emulation platforms to evaluate the resource request and emulation cost of the proposed approach. For instance, emulating one hour of an entire LoRaWAN network with hundreds of nodes requires very affordable hardware that, if realized with a cloud-based computing platform, may cost less than USD 1. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s24072024 |