Mid-Late Holocene Paleoenvironmental and Sea Level Reconstruction on the Al Lith Red Sea Coast, Saudi Arabia

Late Quaternary paleoenvironments are of particular interest to understand how the Earth System’s climate will respond to the undramatic changes during this period, compared with the broader glacial-interglacial variations. In this study, a shallow sediment core (2.84 m long) retrieved from the Red...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in Marine Science 2021-06, Vol.8
Hauptverfasser: Ghandour, Ibrahim M., Al-Zubieri, Aaid G., Basaham, Ali S., Mannaa, Ammar A., Al-Dubai, Talha A., Jones, Brian G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Late Quaternary paleoenvironments are of particular interest to understand how the Earth System’s climate will respond to the undramatic changes during this period, compared with the broader glacial-interglacial variations. In this study, a shallow sediment core (2.84 m long) retrieved from the Red Sea coastal zone in northern Ghubbat al Mahasin, south of Al-Lith, Saudi Arabia, is used to reconstruct the mid-Late Holocene paleoenvironments and sea level based on a multiproxy approach. Remote sensing data, sedimentary facies, benthic foraminiferal assemblages, δ 18 O and δ 13 C stable isotopes, elemental composition and 14 C dating were utilized. The stratigraphy of the core shows three distinctive depositional units. The basal pre 6000 year BP unit consists of unfossiliferous fine to medium sand sharply overlain by black carbonaceous mud and peat, suggesting deposition in a coastal/flood plain under a warm and humid climate. The middle unit (6000-3700 year BP) records the start and end of the marine transgression in this area. It consists of gray argillaceous sand containing bivalve and gastropod shell fragments and a benthic foraminiferal assemblage attesting a lagoonal or quiet shallow marine environment. The upper unit (
ISSN:2296-7745
2296-7745
DOI:10.3389/fmars.2021.677010