On General Alternating Tornheim-Type Double Series
In this paper, we express ∑n,m≥1ε1nε2mMn(u)Mm(v)nrms(n+m)t as a linear combination of alternating multiple zeta values, where εi∈{1,−1} and Mk(u)∈{Hk(u),H¯k(u)}, with Hk(u) and H¯k(u) being harmonic and alternating harmonic numbers, respectively. These sums include Subbarao and Sitaramachandrarao’s...
Gespeichert in:
Veröffentlicht in: | Mathematics (Basel) 2024-09, Vol.12 (17), p.2621 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we express ∑n,m≥1ε1nε2mMn(u)Mm(v)nrms(n+m)t as a linear combination of alternating multiple zeta values, where εi∈{1,−1} and Mk(u)∈{Hk(u),H¯k(u)}, with Hk(u) and H¯k(u) being harmonic and alternating harmonic numbers, respectively. These sums include Subbarao and Sitaramachandrarao’s alternating analogues of Tornheim’s double series as a special case. Our method is based on employing two different techniques to evaluate the specific integral associated with a 3-poset Hasse diagram. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math12172621 |