On General Alternating Tornheim-Type Double Series

In this paper, we express ∑n,m≥1ε1nε2mMn(u)Mm(v)nrms(n+m)t as a linear combination of alternating multiple zeta values, where εi∈{1,−1} and Mk(u)∈{Hk(u),H¯k(u)}, with Hk(u) and H¯k(u) being harmonic and alternating harmonic numbers, respectively. These sums include Subbarao and Sitaramachandrarao’s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2024-09, Vol.12 (17), p.2621
1. Verfasser: Chen, Kwang-Wu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we express ∑n,m≥1ε1nε2mMn(u)Mm(v)nrms(n+m)t as a linear combination of alternating multiple zeta values, where εi∈{1,−1} and Mk(u)∈{Hk(u),H¯k(u)}, with Hk(u) and H¯k(u) being harmonic and alternating harmonic numbers, respectively. These sums include Subbarao and Sitaramachandrarao’s alternating analogues of Tornheim’s double series as a special case. Our method is based on employing two different techniques to evaluate the specific integral associated with a 3-poset Hasse diagram.
ISSN:2227-7390
2227-7390
DOI:10.3390/math12172621