dplbnDE: An R package for discriminative parameter learning of Bayesian Networks by Differential Evolution
The dplbnDE R package is a novel tool that implements Differential Evolution strategies for training Bayesian Network parameters using Discriminative Learning. Focusing on optimizing the Conditional Log-Likelihood rather than the log-likelihood, dplbnDE enhances the performance of Bayesian Networks...
Gespeichert in:
Veröffentlicht in: | SoftwareX 2023-07, Vol.23, p.101442, Article 101442 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The dplbnDE R package is a novel tool that implements Differential Evolution strategies for training Bayesian Network parameters using Discriminative Learning. Focusing on optimizing the Conditional Log-Likelihood rather than the log-likelihood, dplbnDE enhances the performance of Bayesian Networks models in various applications. The package offers four main functions (DErand, DEbest, jade, and lshade) that implement different DE variants, providing users with a versatile and efficient approach to Bayesian Network parameter learning. dplbnDE has the potential to impact data-driven industries by improving predictive capabilities and decision-making processes in fields such as healthcare, finance, and supply chain management. The package and its code are made freely available. |
---|---|
ISSN: | 2352-7110 2352-7110 |
DOI: | 10.1016/j.softx.2023.101442 |