dplbnDE: An R package for discriminative parameter learning of Bayesian Networks by Differential Evolution

The dplbnDE R package is a novel tool that implements Differential Evolution strategies for training Bayesian Network parameters using Discriminative Learning. Focusing on optimizing the Conditional Log-Likelihood rather than the log-likelihood, dplbnDE enhances the performance of Bayesian Networks...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SoftwareX 2023-07, Vol.23, p.101442, Article 101442
Hauptverfasser: Platas-López, Alejandro, Guerra-Hernández, Alejandro, Grimaldo, Francisco, Cruz-Ramírez, Nicandro, Mezura-Montes, Efrén, Quiroz-Castellanos, Marcela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dplbnDE R package is a novel tool that implements Differential Evolution strategies for training Bayesian Network parameters using Discriminative Learning. Focusing on optimizing the Conditional Log-Likelihood rather than the log-likelihood, dplbnDE enhances the performance of Bayesian Networks models in various applications. The package offers four main functions (DErand, DEbest, jade, and lshade) that implement different DE variants, providing users with a versatile and efficient approach to Bayesian Network parameter learning. dplbnDE has the potential to impact data-driven industries by improving predictive capabilities and decision-making processes in fields such as healthcare, finance, and supply chain management. The package and its code are made freely available.
ISSN:2352-7110
2352-7110
DOI:10.1016/j.softx.2023.101442