THE ARMENDARIZ MODULE AND ITS APPLICATION TO THE IKEDA-NAKAYAMA MODULE
A ring R is called a right Ikeda-Nakayama (for short IN-ring) if the left annihilator of the intersection of any two right ideals is the sum of the left annihilators, that is, if ℓ ( I ∩ J ) = ℓ ( I ) + ℓ ( J ) for all right ideals I and J of R . R is called Armendariz ring if whenever polynomials f...
Gespeichert in:
Veröffentlicht in: | International Journal of Mathematics and Mathematical Sciences 2006, Vol.2006 (17), p.837-843-063 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A ring
R
is called a right Ikeda-Nakayama (for short IN-ring) if the left annihilator of the intersection of any two right ideals is the sum of the left annihilators, that is, if
ℓ
(
I
∩
J
)
=
ℓ
(
I
)
+
ℓ
(
J
)
for all right ideals
I
and
J
of
R
.
R
is called Armendariz ring if whenever polynomials
f
(
x
)
=
a
0
+
a
1
x
+
⋯
+
a
m
x
m
,
g
(
x
)
=
b
0
+
b
1
x
+
⋯
+
b
n
x
n
∈
R
[
x
]
satisfy
f
(
x
)
g
(
x
)
=
0
, then
a
i
b
j
=
0
for each
i
,
j
. In this paper, we show that if
R
[
x
]
is a right IN-ring, then
R
is a right IN-ring in case
R
is an Armendariz ring. |
---|---|
ISSN: | 0161-1712 1687-0425 |
DOI: | 10.1155/IJMMS/2006/35238 |