The Importance of Iron Status for Young Children in Low- and Middle-Income Countries: A Narrative Review

Early childhood is characterised by high physiological iron demand to support processes including blood volume expansion, brain development and tissue growth. Iron is also required for other essential functions including the generation of effective immune responses. Adequate iron status is therefore...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceuticals (Basel, Switzerland) Switzerland), 2019-04, Vol.12 (2), p.59
Hauptverfasser: Armitage, Andrew E, Moretti, Diego
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Early childhood is characterised by high physiological iron demand to support processes including blood volume expansion, brain development and tissue growth. Iron is also required for other essential functions including the generation of effective immune responses. Adequate iron status is therefore a prerequisite for optimal child development, yet nutritional iron deficiency and inflammation-related iron restriction are widespread amongst young children in low- and middle-income countries (LMICs), meaning iron demands are frequently not met. Consequently, therapeutic iron interventions are commonly recommended. However, iron also influences infection pathogenesis: iron deficiency reduces the risk of malaria, while therapeutic iron may increase susceptibility to malaria, respiratory and gastrointestinal infections, besides reshaping the intestinal microbiome. This means caution should be employed in administering iron interventions to young children in LMIC settings with high infection burdens. In this narrative review, we first examine demand and supply of iron during early childhood, in relation to the molecular understanding of systemic iron control. We then evaluate the importance of iron for distinct aspects of physiology and development, particularly focusing on young LMIC children. We finally discuss the implications and potential for interventions aimed at improving iron status whilst minimising infection-related risks in such settings. Optimal iron intervention strategies will likely need to be individually or setting-specifically adapted according to iron deficiency, inflammation status and infection risk, while maximising iron bioavailability and considering the trade-offs between benefits and risks for different aspects of physiology. The effectiveness of alternative approaches not centred around nutritional iron interventions for children should also be thoroughly evaluated: these include direct targeting of common causes of infection/inflammation, and maternal iron administration during pregnancy.
ISSN:1424-8247
1424-8247
DOI:10.3390/ph12020059