Insights into short‐ and long‐term crop‐foraging strategies in a chacma baboon (Papio ursinus) from GPS and accelerometer data

Crop‐foraging by animals is a leading cause of human–wildlife “conflict” globally, affecting farmers and resulting in the death of many animals in retaliation, including primates. Despite significant research into crop‐foraging by primates, relatively little is understood about the behavior and move...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology and evolution 2021-01, Vol.11 (2), p.990-1001
Hauptverfasser: Walton, Ben J., Findlay, Leah J., Hill, Russell A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Crop‐foraging by animals is a leading cause of human–wildlife “conflict” globally, affecting farmers and resulting in the death of many animals in retaliation, including primates. Despite significant research into crop‐foraging by primates, relatively little is understood about the behavior and movements of primates in and around crop fields, largely due to the limitations of traditional observational methods. Crop‐foraging by primates in large‐scale agriculture has also received little attention. We used GPS and accelerometer bio‐loggers, along with environmental data, to gain an understanding of the spatial and temporal patterns of activity for a female in a crop‐foraging baboon group in and around commercial farms in South Africa over one year. Crop fields were avoided for most of the year, suggesting that fields are perceived as a high‐risk habitat. When field visits did occur, this was generally when plant primary productivity was low, suggesting that crops were a “fallback food”. All recorded field visits were at or before 15:00. Activity was significantly higher in crop fields than in the landscape in general, evidence that crop‐foraging is an energetically costly strategy and that fields are perceived as a risky habitat. In contrast, activity was significantly lower within 100 m of the field edge than in the rest of the landscape, suggesting that baboons wait near the field edge to assess risks before crop‐foraging. Together, this understanding of the spatiotemporal dynamics of crop‐foraging can help to inform crop protection strategies and reduce conflict between humans and baboons in South Africa. A GPS and accelerometer collar was deployed to understand crop‐foraging by chacma baboons in South Africa. This gave insights into the spatiotemporal patterns of crop‐foraging baboon behavior and indicated that crop‐foraging occurred when natural food availability was low and that baboons waited on the edge of crop fields before engaging in high activity forays to access crops. We discuss how these behavioral insights can inform crop protection strategies to reduce human–baboon conflict.
ISSN:2045-7758
2045-7758
DOI:10.1002/ece3.7114