On Durrmeyer Type λ-Bernstein Operators via (p, q)-Calculus

In the present paper, Durrmeyer type λ-Bernstein operators via (p, q)-calculus are constructed, the first and second moments and central moments of these operators are estimated, a Korovkin type approximation theorem is established, and the estimates on the rate of convergence by using the modulus o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of function spaces 2020, Vol.2020 (2020), p.1-11
Hauptverfasser: Cai, Qing-Bo, Zhou, Guorong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present paper, Durrmeyer type λ-Bernstein operators via (p, q)-calculus are constructed, the first and second moments and central moments of these operators are estimated, a Korovkin type approximation theorem is established, and the estimates on the rate of convergence by using the modulus of continuity of second order and Steklov mean are studied, a convergence theorem for the Lipschitz continuous functions is also obtained. Finally, some numerical examples are given to show that these operators we defined converge faster in some λ cases than Durrmeyer type (p, q)-Bernstein operators.
ISSN:2314-8896
2314-8888
DOI:10.1155/2020/8832627