Targeted Cancer Therapy via pH-Functionalized Nanoparticles: A Scoping Review of Methods and Outcomes

(1) Background: In recent years, several studies have described various and heterogenous methods to sensitize nanoparticles (NPs) to pH changes; therefore, in this current scoping review, we aimed to map current protocols for pH functionalization of NPs and analyze the outcomes of drug-loaded pH-fun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gels 2022-04, Vol.8 (4), p.232
Hauptverfasser: Morarasu, Stefan, Morarasu, Bianca Codrina, Ghiarasim, Razvan, Coroaba, Adina, Tiron, Crina, Iliescu, Radu, Dimofte, Gabriel-Mihail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:(1) Background: In recent years, several studies have described various and heterogenous methods to sensitize nanoparticles (NPs) to pH changes; therefore, in this current scoping review, we aimed to map current protocols for pH functionalization of NPs and analyze the outcomes of drug-loaded pH-functionalized NPs (pH-NPs) when delivered in vivo in tumoral tissue. (2) Methods: A systematic search of the PubMed database was performed for all published studies relating to in vivo models of anti-tumor drug delivery via pH-responsive NPs. Data on the type of NPs, the pH sensitization method, the in vivo model, the tumor cell line, the type and name of drug for targeted therapy, the type of in vivo imaging, and the method of delivery and outcomes were extracted in a separate database. (3) Results: One hundred and twenty eligible manuscripts were included. Interestingly, 45.8% of studies (n = 55) used polymers to construct nanoparticles, while others used other types, i.e., mesoporous silica (n = 15), metal (n = 8), lipids (n = 12), etc. The mean acidic pH value used in the current literature is 5.7. When exposed to in vitro acidic environment, without exception, pH-NPs released drugs inversely proportional to the pH value. pH-NPs showed an increase in tumor regression compared to controls, suggesting better targeted drug release. (4) Conclusions: pH-NPs were shown to improve drug delivery and enhance antitumoral effects in various experimental malignant cell lines.
ISSN:2310-2861
2310-2861
DOI:10.3390/gels8040232