Numerical and experimental investigation to design a novel morphing airfoil for performance optimization

Optimizing flying objects' wing performance has attracted a significant attention in the last few decades. In this article, some of the main mechanisms for changing the geometry of the wing were investigated and a new mechanism is proposed to improve the aerodynamic performance of the airplane...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Propulsion and Power Research 2023-03, Vol.12 (1), p.83-103
Hauptverfasser: Khani Aminjan, Kiumars, Ghodrat, Maryam, Heidari, Milad, Rahmanivahid, Pooyan, Naghdi Khanachah, Shayan, Chitt, Mira, Escobedo-Diaz, Juan Pablo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Optimizing flying objects' wing performance has attracted a significant attention in the last few decades. In this article, some of the main mechanisms for changing the geometry of the wing were investigated and a new mechanism is proposed to improve the aerodynamic performance of the airplane wing. The designs have been simulated and analyzed from both aerodynamic and control points of view. In aerodynamic simulations using CFD methods, two airfoils of NACA series 6 with specifications 65-212 and 65-2012 were modeled. The results indicated that both airfoils used have a better performance compared to others in a certain range of the angle of attack. Subsequently, a new mechanism is proposed to change the wing geometry to optimize its structure. In the proposed mechanism, the structures of airfoils and wings consist of two fixed and moving parts, which can change their geometry with the help of a control circuit. The fixed part has a grooved track, and as the moving part moves in the direction of the grooves, the curvature of the upper and lower parts of the wing changes. The design control circuit includes an angle sensor, a micro controller, and a servomotor. The CFD results are entered into the micro controller as code. At any moment, the micro controller receives the angle data from the angle sensor and by comparing them with the CFD data, and issuing a command to the servomotor, it situates the wing curvature in the optimal state at all times. The built mechanism was tested at an attack angle of 0° and 25°. The results showed that the different parts of the mechanism work with very high precision and put the geometric shape of the wing in an optimal state in a completely intelligent way. It should be noted that the average error in test for t/c and Xt/c was 15.3% and 9%, respectively.
ISSN:2212-540X
2212-540X
DOI:10.1016/j.jppr.2023.02.004