Estimates for bilinear θ-type generalized fractional integral and its commutator on new non-homogeneous generalized Morrey spaces
Let ( X , d , μ ) \left({\mathcal{X}},d,\mu ) be a non-homogeneous metric measure space satisfying the geometrically doubling and upper doubling conditions. In this setting, we first introduce a generalized Morrey space M p u ( μ ) {M}_{p}^{u}\left(\mu ) , where 1 ≤ p < ∞ 1\le p\lt \infty and u (...
Gespeichert in:
Veröffentlicht in: | Analysis and Geometry in Metric Spaces 2023-11, Vol.11 (1), p.895-932 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
(
X
,
d
,
μ
)
\left({\mathcal{X}},d,\mu )
be a non-homogeneous metric measure space satisfying the geometrically doubling and upper doubling conditions. In this setting, we first introduce a generalized Morrey space
M
p
u
(
μ
)
{M}_{p}^{u}\left(\mu )
, where
1
≤
p
<
∞
1\le p\lt \infty
and
u
(
x
,
r
)
:
X
×
(
0
,
∞
)
→
(
0
,
∞
)
u\left(x,r):{\mathcal{X}}\times \left(0,\infty )\to \left(0,\infty )
is a Lebesgue measurable function. Furthermore, under assumption that the measurable functions
u
1
,
u
2
{u}_{1},{u}_{2}
, and
u
u
belong to
W
τ
{{\mathbb{W}}}_{\tau }
with
τ
∈
(
0
,
2
)
\tau \in \left(0,2)
, we prove that the bilinear
θ
\theta
-type generalized fractional integral
T
˜
θ
,
α
{\widetilde{T}}_{\theta ,\alpha }
is bounded from the product of spaces
M
p
1
u
1
(
μ
)
×
M
p
2
u
2
(
μ
)
{M}_{{p}_{1}}^{{u}_{1}}\left(\mu )\times {M}_{{p}_{2}}^{{u}_{2}}\left(\mu )
into spaces
M
q
u
(
μ
)
{M}_{q}^{u}\left(\mu )
, where
u
1
u
2
=
u
{u}_{1}{u}_{2}=u
,
α
∈
(
0
,
1
)
\alpha \in \left(0,1)
, and
1
q
=
1
p
1
+
1
p
2
−
2
α
\frac{1}{q}=\frac{1}{{p}_{1}}+\frac{1}{{p}_{2}}-2\alpha
with
p
1
,
p
2
∈
(
1
,
1
α
)
{p}_{1},{p}_{2}\in \left(1,\frac{1}{\alpha })
, and also show that the
T
˜
θ
,
α
{\widetilde{T}}_{\theta ,\alpha }
is bounded from the product of spaces
M
p
1
u
1
(
μ
)
×
M
p
2
u
2
(
μ
)
{M}_{{p}_{1}}^{{u}_{1}}\left(\mu )\times {M}_{{p}_{2}}^{{u}_{2}}\left(\mu )
into spaces
M
1
u
(
μ
)
{M}_{1}^{u}\left(\mu )
, where
1
=
1
p
1
+
1
p
2
−
2
α
1=\frac{1}{{p}_{1}}+\frac{1}{{p}_{2}}-2\alpha
. Meanwhile, we prove that the commutator
T
˜
θ
,
α
,
b
1
,
b
2
{\widetilde{T}}_{\theta ,\alpha ,{b}_{1},{b}_{2}}
formed by
b
1
,
b
2
∈
RBMO
˜
(
μ
)
{b}_{1},{b}_{2}\in \widetilde{{\rm{RBMO}}}\left(\mu )
and
T
˜
θ
,
α
{\widetilde{T}}_{\theta ,\alpha }
is bounded from the product of spaces
M
p
1
u
1
(
μ
)
×
M
p
2
u
2
(
μ
)
{M}_{{p}_{1}}^{{u}_{1}}\left(\mu )\times {M}_{{p}_{2}}^{{u}_{2}}\left(\mu )
into spaces
M
q
u
(
μ
)
{M}_{q}^{u}\left(\mu )
, and it is also bounded from the product of spaces
M
p
1
u
1
(
μ
)
×
M
p
2
u
2
(
μ
)
{M}_{{p}_{1}}^{{u}_{1}}\left(\mu )\times {M}_{{p}_{2}}^{{u}_{2}}\left(\mu )
into spaces
M
1
u
(
μ
)
{M}_{1}^{u}\left(\mu )
. |
---|---|
ISSN: | 2299-3274 2299-3274 |
DOI: | 10.1515/agms-2023-0101 |