Mining urban perceptions from social media data

This vision paper summaries the methods of using social media data (SMD) to measure urban perceptions. We highlight two major types of data sources (i.e., texts and imagery) and two corresponding techniques (i.e., natural language processing and computer vision). Recognizing the data quality issues...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of spatial information science 2020-01, Vol.2020 (20), p.51-55
Hauptverfasser: Liu, Yu, Yuan, Yihong, Zhang, Fan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This vision paper summaries the methods of using social media data (SMD) to measure urban perceptions. We highlight two major types of data sources (i.e., texts and imagery) and two corresponding techniques (i.e., natural language processing and computer vision). Recognizing the data quality issues of SMD, we propose three criteria for improving the reliability of SMD-based studies. In addition, integrating multi-source data is a promising approach to mitigating the data quality problems.
ISSN:1948-660X
1948-660X
DOI:10.5311/JOSIS.2020.20.665