Classification of plug seedling quality by improved convolutional neural network with an attention mechanism
The classification of plug seedling quality plays an active role in enhancing the quality of seedlings. The EfficientNet-B7-CBAM model, an improved convolutional neural network (CNN) model, was proposed to improve classification efficiency and reduce high cost. To ensure that the EfficientNet-B7 mod...
Gespeichert in:
Veröffentlicht in: | Frontiers in plant science 2022-08, Vol.13, p.967706-967706 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The classification of plug seedling quality plays an active role in enhancing the quality of seedlings. The EfficientNet-B7-CBAM model, an improved convolutional neural network (CNN) model, was proposed to improve classification efficiency and reduce high cost. To ensure that the EfficientNet-B7 model simultaneously learns crucial channel and spatial location information, the convolutional block attention module (CBAM) has been incorporated. To improve the model’s ability to generalize, a transfer learning strategy and Adam optimization algorithm were introduced. A system for image acquisition collected 8,109 images of pepper plug seedlings, and data augmentation techniques improved the resulting data set. The proposed EfficientNet-B7-CBAM model achieved an average accuracy of 97.99% on the test set, 7.32% higher than before the improvement. Under the same experimental conditions, the classification accuracy increased by 8.88–20.05% to classical network models such as AlexNet, VGG16, InceptionV3, ResNet50, and DenseNet121. The proposed method had high accuracy in the plug seedling quality classification task. It was well-adapted to numerous types of plug seedlings, providing a reference for developing a fast and accurate algorithm for plug seedling quality classification. |
---|---|
ISSN: | 1664-462X 1664-462X |
DOI: | 10.3389/fpls.2022.967706 |