Blackbody radiation shift assessment for a lutetium ion clock

The accuracy of state-of-the-art atomic clocks is derived from the insensitivity of narrow optical atomic resonances to environmental perturbations. Two such resonances in singly ionized lutetium have been identified with potentially lower sensitivities compared to other clock candidates. Here we re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2018-04, Vol.9 (1), p.1650-6, Article 1650
Hauptverfasser: Arnold, K. J., Kaewuam, R., Roy, A., Tan, T. R., Barrett, M. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The accuracy of state-of-the-art atomic clocks is derived from the insensitivity of narrow optical atomic resonances to environmental perturbations. Two such resonances in singly ionized lutetium have been identified with potentially lower sensitivities compared to other clock candidates. Here we report measurement of the most significant unknown atomic property of both transitions, the static differential scalar polarizability. From this, the fractional blackbody radiation shift for one of the transitions is found to be −1.36(9) × 10 −18 at 300 K, the lowest of any established optical atomic clock. In consideration of leading systematic effects common to all ion clocks, both transitions compare favorably to the most accurate ion-based clocks reported to date. This work firmly establishes Lu + as a promising candidate for a future generation of more accurate optical atomic clocks. There is a continuous effort to improve the accuracy of atomic clocks. Here the authors measure the static differential scalar polarizability of Lutetium ion resonant transitions and its lower light shift from blackbody radiation makes it a promising candidate for ion-based atomic clocks.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-04079-x