Learning Feynman Diagrams with Tensor Trains
We use tensor network techniques to obtain high-order perturbative diagrammatic expansions for the quantum many-body problem at very high precision. The approach is based on a tensor train parsimonious representation of the sum of all Feynman diagrams, obtained in a controlled and accurate way with...
Gespeichert in:
Veröffentlicht in: | Physical review. X 2022-11, Vol.12 (4), p.041018, Article 041018 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We use tensor network techniques to obtain high-order perturbative diagrammatic expansions for the quantum many-body problem at very high precision. The approach is based on a tensor train parsimonious representation of the sum of all Feynman diagrams, obtained in a controlled and accurate way with the tensor cross interpolation algorithm. It yields the full time evolution of physical quantities in the presence of any arbitrary time-dependent interaction. Our benchmarks on the Anderson quantum impurity problem, within the real-time nonequilibrium Schwinger-Keldysh formalism, demonstrate that this technique supersedes diagrammatic quantum Monte Carlo by orders of magnitude in precision and speed, with convergence rates1/N2or faster, whereNis the number of function evaluations. The method also works in parameter regimes characterized by strongly oscillatory integrals in high dimension, which suffer from a catastrophic sign problem in quantum Monte Carlo calculations. Finally, we also present two exploratory studies showing that the technique generalizes to more complex situations: a double quantum dot and a single impurity embedded in a two-dimensional lattice. |
---|---|
ISSN: | 2160-3308 2160-3308 |
DOI: | 10.1103/PhysRevX.12.041018 |