Assessment of Manufacturing Parameters for New 3D-Printed Heating Circuits Based on CNT-Doped Nanocomposites Processed by UV-Assisted Direct Write
This work consists of the development of an easy strategy to transform any structure into an efficient surface heater by the application of a low voltage over 3D printed nanocomposite circuits. To this end, the electrical conductivity and self-heating capabilities of UV-Assisted Direct Write 3D prin...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2021-08, Vol.11 (16), p.7534 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work consists of the development of an easy strategy to transform any structure into an efficient surface heater by the application of a low voltage over 3D printed nanocomposite circuits. To this end, the electrical conductivity and self-heating capabilities of UV-Assisted Direct Write 3D printed circuits doped with carbon nanotubes were widely explored as a function of the number of printed layers. Moreover, an optimization of the printing process was carried out by comparing the accuracy and printability obtained when printing with two different configurations: extruding and curing the ink in the same stage or curing the extruded ink in a second stage, after the whole layer was deposited. In this regard, the great homogeneity and repeatability of the heating showed by the four-layer printed circuits, together with their excellent performance for long heating times, proved their applicability to convert any structure to a surface heater. Finally, the deicing capability of the four-layer circuit was demonstrated, being able to remove a 2.5 mm thick ice layer in 4 min and 4 s. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app11167534 |