Assessment of Manufacturing Parameters for New 3D-Printed Heating Circuits Based on CNT-Doped Nanocomposites Processed by UV-Assisted Direct Write

This work consists of the development of an easy strategy to transform any structure into an efficient surface heater by the application of a low voltage over 3D printed nanocomposite circuits. To this end, the electrical conductivity and self-heating capabilities of UV-Assisted Direct Write 3D prin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2021-08, Vol.11 (16), p.7534
Hauptverfasser: Cortés, Alejandro, Jiménez-Suárez, Alberto, Campo, Mónica, Ureña, Alejandro, Prolongo, Silvia G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work consists of the development of an easy strategy to transform any structure into an efficient surface heater by the application of a low voltage over 3D printed nanocomposite circuits. To this end, the electrical conductivity and self-heating capabilities of UV-Assisted Direct Write 3D printed circuits doped with carbon nanotubes were widely explored as a function of the number of printed layers. Moreover, an optimization of the printing process was carried out by comparing the accuracy and printability obtained when printing with two different configurations: extruding and curing the ink in the same stage or curing the extruded ink in a second stage, after the whole layer was deposited. In this regard, the great homogeneity and repeatability of the heating showed by the four-layer printed circuits, together with their excellent performance for long heating times, proved their applicability to convert any structure to a surface heater. Finally, the deicing capability of the four-layer circuit was demonstrated, being able to remove a 2.5 mm thick ice layer in 4 min and 4 s.
ISSN:2076-3417
2076-3417
DOI:10.3390/app11167534