A Time-Domain Planning Method for Surface Rescue Process of Amphibious Aircraft for Medium/Distant Maritime Rescue

Medium/distant maritime rescue is significantly important in the development of maritime business. For typical medium/distant maritime rescue, the range limitation of helicopters and many difficulties between helicopter and ship cooperation lead to unsatisfactory rescue results. Compared to helicopt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2023-02, Vol.13 (4), p.2169
Hauptverfasser: Yang, Lu, Yin, Rong, Xue, Yuanbo, Tian, Yongliang, Liu, Hu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Medium/distant maritime rescue is significantly important in the development of maritime business. For typical medium/distant maritime rescue, the range limitation of helicopters and many difficulties between helicopter and ship cooperation lead to unsatisfactory rescue results. Compared to helicopters and ships, amphibious aircrafts could effectively solve the problems faced by helicopters and ships and meet the medium/distant maritime rescue demands with their long cruise range, high speed, high rescue capability and surface landing capability. Therefore, a time-domain planning method (TPM) based on the k-means* clustering algorithm and the genetic algorithm* is proposed in this study for the surface rescue process (SRP) of amphibious aircrafts in medium/distant maritime rescue. To simulate the SRP of amphibious aircrafts, an agent-based simulation environment of medium/distant maritime rescue was constructed based on the Python platform. Finally, a case study was carried out to verify its effectiveness and applicability. The results show that the TPM exhibits satisfactory rescue results for the SRP of the amphibious aircraft and that less than 1 h of delay time is recommended for the amphibious aircraft to rescue the persons in distress by using TPM.
ISSN:2076-3417
2076-3417
DOI:10.3390/app13042169