Potential of Gallium as an Antifungal Agent

There are only few drugs available to treat fungal infections, and the lack of new antifungals, along with the emergence of drug-resistant strains, results in millions of deaths/year. An unconventional approach to fight microbial infection is to exploit nutritional vulnerabilities of microorganism m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in cellular and infection microbiology 2019-12, Vol.9, p.414-414
Hauptverfasser: Bastos, Rafael Wesley, Rossato, Luana, Valero, Clara, Lagrou, Katrien, Colombo, Arnaldo Lopes, Goldman, Gustavo H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There are only few drugs available to treat fungal infections, and the lack of new antifungals, along with the emergence of drug-resistant strains, results in millions of deaths/year. An unconventional approach to fight microbial infection is to exploit nutritional vulnerabilities of microorganism metabolism. The metal gallium can disrupt iron metabolism in bacteria and cancer cells, but it has not been tested against fungal pathogens such as and . Here, we investigate activity of gallium nitrate III [Ga(NO ) ] against these human pathogens, to reveal the gallium mechanism of action and understand the interaction between gallium and clinical antifungal drugs. Ga(NO ) presented a fungistatic effect against azole-sensitive and -resistant strains (MIC = 32.0 mg/L) and also had a synergistic effect with caspofungin, but not with azoles and amphotericin B. Its antifungal activity seems to be reliant on iron-limiting conditions, as the presence of iron increases its MIC value and because we observed a synergistic interaction between gallium and iron chelators against . We also show that an mutant (Δ ) unable to grow in the absence of iron is more susceptible to gallium, reinforcing that gallium could act by disrupting iron homeostasis. Furthermore, we demonstrate that gallium has a fungistatic effect against different species of ranging from 16.0 to 256.0 mg/L, including multidrug-resistant , and . Our findings indicate that gallium can inhibit fungal pathogens under iron-limiting conditions, showing that Ga(NO ) could be a potential therapy not only against bacteria but also as an antifungal drug.
ISSN:2235-2988
2235-2988
DOI:10.3389/fcimb.2019.00414