The Cauchy Problem to a Shallow Water Wave Equation with a Weakly Dissipative Term

A shallow water wave equation with a weakly dissipative term, which includes the weakly dissipative Camassa-Holm and the weakly dissipative Degasperis-Procesi equations as special cases, is investigated. The sufficient conditions about the existence of the global strong solution are given. Provided...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Abstract and Applied Analysis 2012-01, Vol.2012 (2012), p.1189-1211-681
Hauptverfasser: Wang, Ying, Guo, Yunxi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A shallow water wave equation with a weakly dissipative term, which includes the weakly dissipative Camassa-Holm and the weakly dissipative Degasperis-Procesi equations as special cases, is investigated. The sufficient conditions about the existence of the global strong solution are given. Provided that (1-∂x2)u0∈M+(R), u0∈H1(R), and u0∈L1(R), the existence and uniqueness of the global weak solution to the equation are shown to be true.
ISSN:1085-3375
1687-0409
DOI:10.1155/2012/840919