The Cauchy Problem to a Shallow Water Wave Equation with a Weakly Dissipative Term
A shallow water wave equation with a weakly dissipative term, which includes the weakly dissipative Camassa-Holm and the weakly dissipative Degasperis-Procesi equations as special cases, is investigated. The sufficient conditions about the existence of the global strong solution are given. Provided...
Gespeichert in:
Veröffentlicht in: | Abstract and Applied Analysis 2012-01, Vol.2012 (2012), p.1189-1211-681 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A shallow water wave equation with a weakly dissipative term, which includes the weakly dissipative Camassa-Holm and the weakly dissipative Degasperis-Procesi equations as special cases, is investigated. The sufficient conditions about the existence of the global strong solution are given. Provided that (1-∂x2)u0∈M+(R), u0∈H1(R), and u0∈L1(R), the existence and uniqueness of the global weak solution to the equation are shown to be true. |
---|---|
ISSN: | 1085-3375 1687-0409 |
DOI: | 10.1155/2012/840919 |