A Motion Deblurring Network for Enhancing UAV Image Quality in Bridge Inspection
Unmanned aerial vehicles (UAVs) have been increasingly utilized for facility safety inspections due to their superior safety, cost effectiveness, and inspection accuracy compared to traditional manpower-based methods. High-resolution images captured by UAVs directly contribute to identifying and qua...
Gespeichert in:
Veröffentlicht in: | Drones (Basel) 2023-11, Vol.7 (11), p.657 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Unmanned aerial vehicles (UAVs) have been increasingly utilized for facility safety inspections due to their superior safety, cost effectiveness, and inspection accuracy compared to traditional manpower-based methods. High-resolution images captured by UAVs directly contribute to identifying and quantifying structural defects on facility exteriors, making image quality a critical factor in achieving accurate results. However, motion blur induced by external factors such as vibration, low light conditions, and wind during UAV operation significantly degrades image quality, leading to inaccurate defect detection and quantification. To address this issue, this research proposes a deblurring network using a Generative Adversarial Network (GAN) to eliminate the motion blur effect in UAV images. The GAN-based motion deblur network represents an image inpainting method that leverages generative models to correct blurry artifacts, thereby generating clear images. Unlike previous studies, this proposed approach incorporates deblur and blur learning modules to realistically generate blur images required for training the generative models. The UAV images processed using the motion deblur network are evaluated using a quality assessment method based on local blur map and other well-known image quality assessment (IQA) metrics. Moreover, in the experiment of crack detection utilizing the object detection system, improved detection results are observed when using enhanced images. Overall, this research contributes to improving the quality and accuracy of facility safety inspections conducted with UAV-based inspections by effectively addressing the challenges associated with motion blur effects in UAV-captured images. |
---|---|
ISSN: | 2504-446X 2504-446X |
DOI: | 10.3390/drones7110657 |