Deep in the Bowel: Highly Interpretable Neural Encoder-Decoder Networks Predict Gut Metabolites from Gut Microbiome
Technological advances in next-generation sequencing (NGS) and chromatographic assays [e.g., liquid chromatography mass spectrometry (LC-MS)] have made it possible to identify thousands of microbe and metabolite species, and to measure their relative abundance. In this paper, we propose a sparse neu...
Gespeichert in:
Veröffentlicht in: | BMC genomics 2020-07, Vol.21 (Suppl 4), p.256-256, Article 256 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Technological advances in next-generation sequencing (NGS) and chromatographic assays [e.g., liquid chromatography mass spectrometry (LC-MS)] have made it possible to identify thousands of microbe and metabolite species, and to measure their relative abundance. In this paper, we propose a sparse neural encoder-decoder network to predict metabolite abundances from microbe abundances.
Using paired data from a cohort of inflammatory bowel disease (IBD) patients, we show that our neural encoder-decoder model outperforms linear univariate and multivariate methods in terms of accuracy, sparsity, and stability. Importantly, we show that our neural encoder-decoder model is not simply a black box designed to maximize predictive accuracy. Rather, the network's hidden layer (i.e., the latent space, comprised only of sparsely weighted microbe counts) actually captures key microbe-metabolite relationships that are themselves clinically meaningful. Although this hidden layer is learned without any knowledge of the patient's diagnosis, we show that the learned latent features are structured in a way that predicts IBD and treatment status with high accuracy.
By imposing a non-negative weights constraint, the network becomes a directed graph where each downstream node is interpretable as the additive combination of the upstream nodes. Here, the middle layer comprises distinct microbe-metabolite axes that relate key microbial biomarkers with metabolite biomarkers. By pre-processing the microbiome and metabolome data using compositional data analysis methods, we ensure that our proposed multi-omics workflow will generalize to any pair of -omics data. To the best of our knowledge, this work is the first application of neural encoder-decoders for the interpretable integration of multi-omics biological data. |
---|---|
ISSN: | 1471-2164 1471-2164 |
DOI: | 10.1186/s12864-020-6652-7 |