DEM-Based Analysis of Interactions between Tectonics and Landscapes in the Ore Mountains and Eger Rift (East Germany and NW Czech Republic)

Tectonics modify the base-level of rivers and result in the progressive erosion of landscapes. We propose here a new method to classify landscapes according to their erosional stages. This method is based on the combination of two DEM-based geomorphic indices: the hypsometric integral, which highlig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2014-09, Vol.6 (9), p.7971-8001
Hauptverfasser: Andreani, Louis, Stanek, Klaus, Gloaguen, Richard, Krentz, Ottomar, Domínguez-González, Leomaris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tectonics modify the base-level of rivers and result in the progressive erosion of landscapes. We propose here a new method to classify landscapes according to their erosional stages. This method is based on the combination of two DEM-based geomorphic indices: the hypsometric integral, which highlights elevated surfaces, and surface roughness, which increases with the topographic elevation and the incision by the drainage network. The combination of these two indices allows one to produce a map of erosional discontinuities that can be easily compared with the known structural framework. In addition, this method can be easily implemented (e.g., in MATLAB) and provides a quick way to analyze regional-scale landscapes. We propose here an example of a region where this approach becomes extremely valuable: the Ore Mountains and adjacent regions. The lack of young stratigraphic markers prevents a detailed analysis of recent fault activity. However, discontinuities in mapped geomorphic indices coupled to the analysis of river longitudinal profiles suggest a tight relationship between erosional discontinuities and main tectonic lineaments.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs6097971