Modelling of Animal Activity, Illuminance, and Noise on a Weaned Piglet Farm
Measuring animal activity and its evolution in real time is useful for animal welfare assessment. In addition, illuminance and noise level are two factors that can improve our understanding of animal activity. This study aims to establish relationships between animal activity as measured by passive...
Gespeichert in:
Veröffentlicht in: | Animals (Basel) 2023-10, Vol.13 (20), p.3257 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Measuring animal activity and its evolution in real time is useful for animal welfare assessment. In addition, illuminance and noise level are two factors that can improve our understanding of animal activity. This study aims to establish relationships between animal activity as measured by passive infrared sensors, and both illuminance and noise level on a conventional weaned piglet farm. First, regression models were applied, and then cosine models with three harmonics were developed using least squares with a Generalized Reduced Gradient Nonlinear method. Finally, all the models were validated. Linear models showed positive correlations, with values between 0.40 and 0.56. Cosine models drew clear patterns of daily animal activity, illuminance and noise level with two peaks, one in the morning and one in the afternoon, coinciding with human activity inside the building, with a preference for inactivity at night-time and around midday. Cosine model fitting revealed strong correlations, both in the measurement and validation periods, for animal activity (R = 0.97 and 0.92), illuminance (R = 0.95 and 0.91) and noise level (R = 0.99 and 0.92). The developed models could be easily implemented in animal welfare monitoring systems and could provide useful information about animal activity through continuous monitoring of illuminance or noise levels. |
---|---|
ISSN: | 2076-2615 2076-2615 |
DOI: | 10.3390/ani13203257 |