A dataset of ambient sensors in a meeting room for activity recognition
As IoT technology advances, using machine learning to detect user activities emerges as a promising strategy for delivering a variety of smart services. It is essential to have access to high-quality data that also respects privacy concerns and data streams from ambient sensors in the surrounding en...
Gespeichert in:
Veröffentlicht in: | Scientific data 2024-05, Vol.11 (1), p.516-18, Article 516 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As IoT technology advances, using machine learning to detect user activities emerges as a promising strategy for delivering a variety of smart services. It is essential to have access to high-quality data that also respects privacy concerns and data streams from ambient sensors in the surrounding environment meet this requirement. However, despite growing interest in research, there is a noticeable lack of datasets from ambient sensors designed for public spaces, as opposed to those for private settings. To bridge this gap, we design the DOO-RE dataset within an actual meeting room environment, equipped with three types of ambient sensors: those triggered by actuators, users, and the environment itself. This dataset is compiled from the activities of over twenty students throughout a period of four months. DOO-RE provides reliable and purpose-oriented activity data in a public setting, with activity labels verified by multiple annotators through a process of cross-validation to guarantee data integrity. DOO-RE categorizes nine different types of activities and facilitates the study of both single and group activities. We are optimistic that DOO-RE will play a significant role in advancing human activity recognition technologies, enhancing smart automation systems, and enabling the rapid setup of smart spaces through ambient sensors. |
---|---|
ISSN: | 2052-4463 2052-4463 |
DOI: | 10.1038/s41597-024-03344-7 |