An On-Line Sensor Fault Detection System for an AC Microgrid Secondary Control Based on a Sliding Mode Observer Model

The current study proposes a strategy for sensing fault detection in the secondary control of an isolated Microgrid based on a high-order Sliding Mode Robust Observers design. The proposed strategy’s main objective is to support future diagnostic and fault tolerance systems in handling these extreme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2024-08, Vol.17 (15), p.3808
Hauptverfasser: Bravo, John, Ortiz, Leony, García, Edwin, Ruiz, Milton, Aguila, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The current study proposes a strategy for sensing fault detection in the secondary control of an isolated Microgrid based on a high-order Sliding Mode Robust Observers design. The proposed strategy’s main objective is to support future diagnostic and fault tolerance systems in handling these extreme situations. The proposal is based on a generation system and a waste management system. Four test scenarios were generated in a typical Microgrid to validate the designed strategy, including two Battery Energy Storage Systems in parallel, linear, and non-linear loads. The scenarios included normal grid operation and three types of sensing faults (abrupt, incipient, and random) directly affecting the secondary control of a hierarchical control strategy. The results showed that the proposed strategy could provide a real-time decision for detection and reduce the occurrence of false alarms in this process. The effectiveness of the fault detection strategy was verified and tested by digital simulation in Matlab/Simulink R2023b.
ISSN:1996-1073
1996-1073
DOI:10.3390/en17153808