XBP1 Regulates the Transcription of HIF-1a in BALB/c Mice with Chronic Rhinosinusitis without Polyps

X-box binding protein 1 (XBP1) is a transcription factor that recognizes the CRE-like element in enhancers of human T-cell leukemia virus and MHC class II gene and induces their transcription. This study was performed to characterize the function of XBP1, which was identified to be a differentially...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical cellular pathology (Amsterdam) 2022-07, Vol.2022, p.1-12
Hauptverfasser: Qu, Xiaopeng, Li, Hongyan, Meng, Lingzhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:X-box binding protein 1 (XBP1) is a transcription factor that recognizes the CRE-like element in enhancers of human T-cell leukemia virus and MHC class II gene and induces their transcription. This study was performed to characterize the function of XBP1, which was identified to be a differentially expressed gene via GEO database, in chronic rhinosinusitis (CRS) without nasal polyps (CRSsNP). XBP1 expression was significantly elevated in both CRSsNP patients and mice who were accompanied with mucosal thickening, goblet cell hyperplasia and chemosis, glandular hyperplasia, and dense infiltration of inflammatory cells. Silencing of XBP1 suppressed the development of CRSsNP in mice. Mechanistically, knockdown of XBP1 downregulated the expression of hypoxia-inducible factor 1-alpha (HIF-1a), and overexpression of XBP1 led to the opposite result. Silencing of HIF-1a inhibited β-catenin expression and impaired the Wnt/β-catenin pathway. Further overexpression of HIF-1a in XBP1-silenced CRSsNP mice exacerbated pathological changes in mouse nasal mucosal tissues, promoted inflammation, and activated the Wnt/β-catenin pathway. Taken together, overexpression of XBP1 may be associated with increased expression of HIF-1a and possibly contribute to the Wnt/β-catenin pathway activation and the development of CRSsNP.
ISSN:2210-7177
2210-7185
DOI:10.1155/2022/3066456