A WEAK PERIODICITY CONDITION FOR RINGS
A ring is called semi-weakly periodic if each element which is not in the center or the Jacobson radical can be written as the sum of a potent element and a nilpotent element. After discussing some basic properties of such rings, we investigate their commutativity behavior.
Gespeichert in:
Veröffentlicht in: | International Journal of Mathematics and Mathematical Sciences 2005-01, Vol.2005 (9), p.1387-1391-105 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A ring is called semi-weakly periodic if each element which is not in the center or the Jacobson radical can be written as the sum of a potent element and a nilpotent element. After discussing some basic properties of such rings, we investigate their commutativity behavior. |
---|---|
ISSN: | 0161-1712 1687-0425 |
DOI: | 10.1155/IJMMS.2005.1387 |