Continuous Regular Functions

Following Chaudhuri, Sankaranarayanan, and Vardi, we say that a function $f:[0,1] \to [0,1]$ is $r$-regular if there is a B\"{u}chi automaton that accepts precisely the set of base $r \in \mathbb{N}$ representations of elements of the graph of $f$. We show that a continuous $r$-regular function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Logical methods in computer science 2020-01, Vol.16, Issue 1
Hauptverfasser: Alexi Block Gorman, Philipp Hieronymi, Elliot Kaplan, Ruoyu Meng, Erik Walsberg, Zihe Wang, Ziqin Xiong, Hongru Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Following Chaudhuri, Sankaranarayanan, and Vardi, we say that a function $f:[0,1] \to [0,1]$ is $r$-regular if there is a B\"{u}chi automaton that accepts precisely the set of base $r \in \mathbb{N}$ representations of elements of the graph of $f$. We show that a continuous $r$-regular function $f$ is locally affine away from a nowhere dense, Lebesgue null, subset of $[0,1]$. As a corollary we establish that every differentiable $r$-regular function is affine. It follows that checking whether an $r$-regular function is differentiable is in $\operatorname{PSPACE}$. Our proofs rely crucially on connections between automata theory and metric geometry developed by Charlier, Leroy, and Rigo.
ISSN:1860-5974
DOI:10.23638/LMCS-16(1:17)2020