Upper bounds for the reduced second zagreb index of graphs

The graph invariant $RM_2$‎, ‎known under the name reduced second Zagreb index‎, ‎is defined as $RM_2(G)=\sum_{uv\in E(G)}(d_G(u)-1)(d_G(v)-1)$‎, ‎where $d_G(v)$ is the degree of the vertex $v$ of the graph $G$‎. ‎In this paper‎, ‎we give a tight upper bound of $RM_2$ for the class of graphs of orde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions on combinatorics 2021-09, Vol.10 (3), p.137-148
Hauptverfasser: Batmend Horoldagva, Tsend-Ayush Selenge, Lkhagva Buyantogtokh, Shiikhar Dorjsembe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The graph invariant $RM_2$‎, ‎known under the name reduced second Zagreb index‎, ‎is defined as $RM_2(G)=\sum_{uv\in E(G)}(d_G(u)-1)(d_G(v)-1)$‎, ‎where $d_G(v)$ is the degree of the vertex $v$ of the graph $G$‎. ‎In this paper‎, ‎we give a tight upper bound of $RM_2$ for the class of graphs of order $n$ and size $m$ with at least one dominating vertex‎. ‎Also‎, ‎we obtain sharp upper bounds on $RM_2$ for all graphs of order $n$ with $k$ dominating vertices and for all graphs of order $n$ with $k$ pendant vertices‎. ‎Finally‎, ‎we give a sharp upper bound on $RM_2$ for all $k$-apex trees of order $n$‎. ‎Moreover‎, ‎the corresponding extremal graphs are characterized‎.
ISSN:2251-8657
2251-8665
DOI:10.22108/toc.2020.125478.1774