Upper bounds for the reduced second zagreb index of graphs
The graph invariant $RM_2$, known under the name reduced second Zagreb index, is defined as $RM_2(G)=\sum_{uv\in E(G)}(d_G(u)-1)(d_G(v)-1)$, where $d_G(v)$ is the degree of the vertex $v$ of the graph $G$. In this paper, we give a tight upper bound of $RM_2$ for the class of graphs of orde...
Gespeichert in:
Veröffentlicht in: | Transactions on combinatorics 2021-09, Vol.10 (3), p.137-148 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The graph invariant $RM_2$, known under the name reduced second Zagreb index, is defined as $RM_2(G)=\sum_{uv\in E(G)}(d_G(u)-1)(d_G(v)-1)$, where $d_G(v)$ is the degree of the vertex $v$ of the graph $G$. In this paper, we give a tight upper bound of $RM_2$ for the class of graphs of order $n$ and size $m$ with at least one dominating vertex. Also, we obtain sharp upper bounds on $RM_2$ for all graphs of order $n$ with $k$ dominating vertices and for all graphs of order $n$ with $k$ pendant vertices. Finally, we give a sharp upper bound on $RM_2$ for all $k$-apex trees of order $n$. Moreover, the corresponding extremal graphs are characterized. |
---|---|
ISSN: | 2251-8657 2251-8665 |
DOI: | 10.22108/toc.2020.125478.1774 |