MiR-181c-5p ameliorates learning and memory in sleep-deprived mice via HMGB1/TLR4/NF-κB pathway
Sleep deprivation (SD) can lead to cognitive impairment caused by neuroinflammation. MiR-181c-5p/HMGB1 axis plays a part in anti-inflammation effects. However, the mechanism that miR-181c-5p facilitates learning and memory in SD mice remains unclear. So we investigated the role of miR-181c-5p in lea...
Gespeichert in:
Veröffentlicht in: | Anais da Academia Brasileira de Ciências 2023-01, Vol.95 (suppl 1), p.e20220750-e20220750 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sleep deprivation (SD) can lead to cognitive impairment caused by neuroinflammation. MiR-181c-5p/HMGB1 axis plays a part in anti-inflammation effects. However, the mechanism that miR-181c-5p facilitates learning and memory in SD mice remains unclear. So we investigated the role of miR-181c-5p in learning and memory impairment induced by SD. We overexpressed miR-181c-5p in the mice hippocampus by injecting lentivirus vector-miR-181c-5p (LV-miR-181c-5p) particles. Mice were divided into four groups: control (Ctrl), SD, SD + miR-181c-5p and SD + vector. We found that mice in the third group showed ameliorated learning and memory compared with the fourth group. The content of ionized calcium binding adaptor molecule 1 (IBA-1) in the third group was decreased compared with the fourth group. Moreover, the expression levels of HMGB1, TLR4 and p-NF-κB in the hippocampus of overexpressed miR-181c-5p mice were reduced. In total, miR-181c-5p ameliorated learning and memory in SD mice via the HMGB1/TLR4/NF-κB pathway. |
---|---|
ISSN: | 0001-3765 1678-2690 1678-2690 |
DOI: | 10.1590/0001-3765202320220750 |