Contrastive Domain Adaptation-Based Sparse SAR Target Classification under Few-Shot Cases

Due to the imaging mechanism of synthetic aperture radar (SAR), it is difficult and costly to acquire abundant labeled SAR images. Moreover, a typical matched filtering (MF) based image faces the problems of serious noise, sidelobes, and clutters, which will bring down the accuracy of SAR target cla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2023-01, Vol.15 (2), p.469
Hauptverfasser: Bi, Hui, Liu, Zehao, Deng, Jiarui, Ji, Zhongyuan, Zhang, Jingjing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to the imaging mechanism of synthetic aperture radar (SAR), it is difficult and costly to acquire abundant labeled SAR images. Moreover, a typical matched filtering (MF) based image faces the problems of serious noise, sidelobes, and clutters, which will bring down the accuracy of SAR target classification. Different from the MF-based result, a sparse image shows better quality with less noise and higher image signal-to-noise ratio (SNR). Therefore, theoretically using it for target classification will achieve better performance. In this paper, a novel contrastive domain adaptation (CDA) based sparse SAR target classification method is proposed to solve the problem of insufficient samples. In the proposed method, we firstly construct a sparse SAR image dataset by using the complex image based iterative soft thresholding (BiIST) algorithm. Then, the simulated and real SAR datasets are simultaneously sent into an unsupervised domain adaptation framework to reduce the distribution difference and obtain the reconstructed simulated SAR images for subsequent target classification. Finally, the reconstructed simulated images are manually labeled and fed into a shallow convolutional neural network (CNN) for target classification along with a small number of real sparse SAR images. Since the current definition of the number of small samples is still vague and inconsistent, this paper defines few-shot as less than 20 per class. Experimental results based on MSTAR under standard operating conditions (SOC) and extended operating conditions (EOC) show that the reconstructed simulated SAR dataset makes up for the insufficient information from limited real data. Compared with other typical deep learning methods based on limited samples, our method is able to achieve higher accuracy especially under the conditions of few shots.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs15020469