Investigation of Non-Newtonian Characteristics of Water Flow in Micro-/Nanochannels and Tight Reservoirs

The characteristic scale of pore flow in tight reservoirs is generally in the range of 0.1 μm to 1 μm, which shows the obvious micro- and nanoscale effect. The traditional oil and gas seepage theory cannot accurately describe the flow law of liquid in the micro- and nanopores. The determination of s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geofluids 2022, Vol.2022, p.1-18
Hauptverfasser: Ding, Heying, Song, Fuquan, Hu, Xiao, Sun, Yeheng, Zhu, Weiyao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The characteristic scale of pore flow in tight reservoirs is generally in the range of 0.1 μm to 1 μm, which shows the obvious micro- and nanoscale effect. The traditional oil and gas seepage theory cannot accurately describe the flow law of liquid in the micro- and nanopores. The determination of seepage characteristics is crucial to the development, layout, and prediction of tight oil. Therefore, a non-Newtonian fluid model is established to discuss the flow characteristics of confined liquid in the heterogeneous pores of microtubules and reveal the nonlinear seepage law of water in micro- and nanochannels and tight reservoirs. Based on the characteristics of non-Newtonian fluid of confined fluid in micro- and nanospace, the flow model of non-Newtonian fluid under the action of shear stress was deduced. The flow velocity variation of liquid in micro- and nanochannel and dense core was analyzed, and the flow rate of water was less than that predicted by macro theory. According to the flow experiment of water in micro- and nanochannels, the flow model of power-law non-Newtonian fluid was verified. At the same time, through the flow experiment of water in the dense rock core, the non-Newtonian model was used for nonlinear fitting, and the non-Newtonian power-law parameters and average pore radius were obtained, which verified the effectiveness of the non-Newtonian flow model.
ISSN:1468-8115
1468-8123
DOI:10.1155/2022/1523287