Unequally Spaced Antenna Array Synthesis Using Accelerating Gaussian Mutated Cat Swarm Optimization

Low peak sidelobe level (PSLL) and antenna arrays with high directivity are needed nowadays for reliable wireless communication systems. Controlling the PSLL is a major issue in designing effective antenna array systems. In this paper, a nature inspired technique, namely accelerating Gaussian mutate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Telecommunications and Information Technology 2022, Vol.1 (2022), p.99-109
Hauptverfasser: Kumar, Prasanna K., Pappula, Lakshman, Madhav, B. T. P., Prabhakar, V. S. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Low peak sidelobe level (PSLL) and antenna arrays with high directivity are needed nowadays for reliable wireless communication systems. Controlling the PSLL is a major issue in designing effective antenna array systems. In this paper, a nature inspired technique, namely accelerating Gaussian mutated cat swarm optimization (AGMCSO) that attributes global search abilities, is proposed to control PSLL in the radiation pattern. In AGM-SCO, Gaussian mutation with an acceleration parameter is used in the position-updated equation, which allows the algorithm to search in a systematic way to prevent premature convergence and to enhance the speed of convergence. Experiments concerning several benchmark multimodal problems have been conducted and the obtained results illustrate that AGMCSO shows excellent performance concerning evolutionary speed and accuracy. To validate the overall efficacy of the algorithm, a sensitivity analysis was performed for different AGMCSO parameters. AGMCSO was researched on numerous linear, unequally spaced antenna arrays and the results show that in terms of generating low PSLL with a narrow first null beamwidth (FNBW), AGMCSO outperforms conventional algorithms.
ISSN:1899-8852
1509-4553
1899-8852
DOI:10.26636/jtit.2022.154821