Stability and Bifurcation Analysis in a Class of Two-Neuron Networks with Resonant Bilinear Terms

A class of two-neuron networks with resonant bilinear terms is considered. The stability of the zero equilibrium and existence of Hopf bifurcation is studied. It is shown that the zero equilibrium is locally asymptotically stable when the time delay is small enough, while change of stability of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Abstract and Applied Analysis 2011-01, Vol.2011 (2011), p.3001-3021
Hauptverfasser: Xu, Changjin, He, Xiaofei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A class of two-neuron networks with resonant bilinear terms is considered. The stability of the zero equilibrium and existence of Hopf bifurcation is studied. It is shown that the zero equilibrium is locally asymptotically stable when the time delay is small enough, while change of stability of the zero equilibrium will cause a bifurcating periodic solution as the time delay passes through a sequence of critical values. Some explicit formulae for determining the stability and the direction of the Hopf bifurcation periodic solutions bifurcating from Hopf bifurcations are obtained by using the normal form theory and center manifold theory. Finally, numerical simulations supporting the theoretical analysis are carried out.
ISSN:1085-3375
1687-0409
DOI:10.1155/2011/697630