Regional Clusters, Similarities, and Changes in Turkey’s Wood Production: A Comparative Analysis Using K-Means and Ward’s Clustering Methods
This study aimed to separate the wood production in regions and provinces of Turkey into homogeneous groups based on similarities by using the country’s wood production figures for 2013 and 2018. Within this context, the hierarchical Ward’s and non-hierarchical K-means clustering methods were used c...
Gespeichert in:
Veröffentlicht in: | Drvna industrija 2021-11, Vol.72 (4), p.337-346 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study aimed to separate the wood production in regions and provinces of Turkey into homogeneous groups based on similarities by using the country’s wood production figures for 2013 and 2018. Within this context, the hierarchical Ward’s and non-hierarchical K-means clustering methods were used comparatively. Clustering analyses of 2 to 6 in number were performed via both methods, and the same regions mostly fell into the same cluster groups, although in different cluster combinations. The results showed that some provinces with rich forest areas did not produce enough wood. It was observed that these provinces were in the same clusters with provinces having a low amount of forest areas and low wood production. Over the five-year period, very few provinces and regions differed in line with the previous development plans. The creation of a spatial database for wood raw material production using the findings obtained in this study will contribute to the development of operational inventory methods that can be included in long- and medium-term forestry plans.
Cilj ovog istraživanja bio je prema sličnosti grupirati preradu drva u regijama i pokrajinama Turske u homogene skupine na temelju podataka o drvnoj industriji u 2013. i 2018. U tom kontekstu primijenjene su hijerarhijska Wardova metoda klasteriranja i nehijerarhijski algoritam K-prosjeka. Analize klasteriranja regija s 2 – 6 klastera provedene su uz pomoć obiju metoda, a iste su regije uglavnom pripadale istim skupinama klastera, iako s različitim kombinacijama klastera. Rezultati su pokazali da neke pokrajine s bogatim šumskim površinama ne prerađuju dovoljno drva. Uočeno je da su te pokrajine svrstane u iste skupine kao i pokrajine s malom količinom šumskih površina i niskom preradom drva. Tijekom petogodišnjeg razdoblja vrlo se malo pokrajina i regija razlikovalo od prethodnih razvojnih planova. Stvaranje sveobuhvatne baze podataka za proizvodnju drvne sirovine uz pomoć nalaza dobivenih u ovoj studiji pridonijet će razvoju operativnih metoda upravljanja zalihama koje se mogu uključiti u dugoročne i srednjoročne planove šumarstva. |
---|---|
ISSN: | 0012-6772 1847-1153 |
DOI: | 10.5552/drvind.2021.2031 |