The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500
Anthropogenic increases in atmospheric greenhouse gas concentrations are the main driver of current and future climate change. The integrated assessment community has quantified anthropogenic emissions for the shared socio-economic pathway (SSP) scenarios, each of which represents a different future...
Gespeichert in:
Veröffentlicht in: | Geoscientific Model Development 2020-08, Vol.13 (8), p.3571-3605 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Anthropogenic increases in atmospheric greenhouse gas
concentrations are the main driver of current and future climate change. The
integrated assessment community has quantified anthropogenic emissions for
the shared socio-economic pathway (SSP) scenarios, each of which represents
a different future socio-economic projection and political environment.
Here, we provide the greenhouse gas concentrations for these SSP scenarios
– using the reduced-complexity climate–carbon-cycle model MAGICC7.0. We
extend historical, observationally based concentration data with SSP
concentration projections from 2015 to 2500 for 43 greenhouse gases with monthly and latitudinal resolution. CO2 concentrations by 2100 range
from 393 to 1135 ppm for the lowest (SSP1-1.9) and highest (SSP5-8.5)
emission scenarios, respectively. We also provide the concentration
extensions beyond 2100 based on assumptions regarding the trajectories of fossil
fuels and land use change emissions, net negative emissions, and the
fraction of non-CO2 emissions. By 2150, CO2 concentrations in the
lowest emission scenario are approximately 350 ppm and approximately plateau
at that level until 2500, whereas the highest fossil-fuel-driven scenario
projects CO2 concentrations of 1737 ppm and reaches concentrations
beyond 2000 ppm by 2250. We estimate that the share of CO2 in the total
radiative forcing contribution of all considered 43 long-lived greenhouse
gases increases from 66 % for the present day to roughly 68 % to 85 % by
the time of maximum forcing in the 21st century. For this estimation,
we updated simple radiative forcing parameterizations that reflect the Oslo
Line-By-Line model results. In comparison to the representative concentration pathways (RCPs), the five main SSPs
(SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) are more evenly spaced
and extend to lower 2100 radiative forcing and temperatures. Performing two
pairs of six-member historical ensembles with CESM1.2.2, we estimate the
effect on surface air temperatures of applying latitudinally and seasonally
resolved GHG concentrations. We find that the ensemble differences in the
March–April–May (MAM) season provide a regional warming in higher northern
latitudes of up to 0.4 K over the historical period, latitudinally averaged
of about 0.1 K, which we estimate to be comparable to the upper bound
(∼5 % level) of natural variability. In comparison to the
comparatively straight line of the last 2000 years, the greenhouse gas
concentrat |
---|---|
ISSN: | 1991-9603 1991-959X 1991-962X 1991-9603 1991-962X |
DOI: | 10.5194/gmd-13-3571-2020 |