Reservoir Characteristics of the Lower Jurassic Lacustrine Shale in the Eastern Sichuan Basin and Its Effect on Gas Properties: An Integrated Approach

The exploration of shale gas in Fuling area achieved great success, but the reservoir characteristics and gas content of the lower Jurassic lacustrine in the northern Fuling areas remain unknown. We conducted organic geochemical analyses, Field Emission Scanning Electron Microscope (FE-SEM), X-ray d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2020-09, Vol.13 (17), p.4495, Article 4495
Hauptverfasser: He, Jianhua, Deng, Hucheng, Ma, Ruolong, Wang, Ruyue, Wang, Yuanyuan, Li, Ang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The exploration of shale gas in Fuling area achieved great success, but the reservoir characteristics and gas content of the lower Jurassic lacustrine in the northern Fuling areas remain unknown. We conducted organic geochemical analyses, Field Emission Scanning Electron Microscope (FE-SEM), X-ray diffraction (XRD) analysis, high-pressure mercury intrusion (MIP) and CH(4)adsorption experimental methods, as well as NMR logging, to study mineral composition, geochemical, pore structure characteristics of organic-rich shales and their effects on the methane adsorption capacity. The Da'anzhai shale member is generally a set of relatively thick (avg. 75 m) and high carbonate-content (avg. 56.89%) lacustrine sediments with moderate total organic carbon (TOC) (avg. 1.12%) and thermal maturation (Vitrinite reflectance (VR): avg. 1.19%). Five types of lithofacies can be classified: marl (ML), calcareous shale (CS), argillaceous shale (AS), muddy siltstone (MS), and silty shale (SS). CS has good reservoir quality with a high porosity (avg. 4.72%). The small pores with the transverse relaxation time of 0.6-1 ms and 1-3 ms comprised the major part of the porosity in the most lithofacies from Nuclear magnetic resonance (NMR) data, while the large pore (>300 ms) accounts for a small porosity proportion in the CS. The pores mainly constitute of mesopores (avg. 23.2 nm). The clay minerals with a large number of interparticle pores in the SEM contributes most to surface area in the shale lithofacies with a moderate TOC. The adsorption potential of shale samples is huge with an average adsorption capacity of 4.38 mL/g and also has high gas content (avg. 1.04 m(3)/t). The adsorption capacity of shale samples increases when TOC increases and temperature decreases. Considered reservoir properties and gas properties, CS with the laminated structures in the medium-upper section of the Da'anzhai member is the most advantage lithofacies for shale gas exploitation.
ISSN:1996-1073
1996-1073
DOI:10.3390/en13174495