Research on the fatigue performance of continuous beam bridges with vibration-mixed steel fiber-reinforced concrete

To address the fatigue damage issues in continuous beam bridges under vehicle loads, a method using vibration-mixed steel fiber-reinforced concrete to improve critical vulnerable areas of the bridge is proposed, thereby enhancing the bridge’s fatigue resistance. Fatigue performance and micro electro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-12, Vol.14 (1), p.29927-18
Hauptverfasser: Xiao, Zhongyuan, Wang, Jiangfei, Huang, Liang, Xu, Jianguo, Zhou, Qi, Kou, Lei, Qi, Wanshuai, Wei, Jiandong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To address the fatigue damage issues in continuous beam bridges under vehicle loads, a method using vibration-mixed steel fiber-reinforced concrete to improve critical vulnerable areas of the bridge is proposed, thereby enhancing the bridge’s fatigue resistance. Fatigue performance and micro electron microscopy tests were designed for vibration-mixed steel fiber-reinforced concrete, analyzing its damage conditions and microstructural changes under 0 to 2 million cyclic loads, and the key mechanical parameters of the concrete were determined. Based on this, a numerical analysis model was established to simulate the fatigue damage of continuous beam bridges under moving vehicle loads. The results show that piers made with vibration-mixed steel fiber-reinforced concrete exhibit a 56.86% reduction in compressive damage compared to conventional piers, a reduction in stiffness damage range, and a 29.35% increase in fatigue life.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-79739-8