A Multiband Shared Aperture MIMO Antenna for Millimeter-Wave and Sub-6GHz 5G Applications
A shared aperture 2-element multiple-input-multiple-output (MIMO) antenna design for 5G standards is presented in this study, one which uses the same radiating structure to cover both the sub-6GHz and millimeter-wave (millimeter-wave) bands. The proposed antenna comprises four concentric pentagonal...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2022-02, Vol.22 (5), p.1808 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A shared aperture 2-element multiple-input-multiple-output (MIMO) antenna design for 5G standards is presented in this study, one which uses the same radiating structure to cover both the sub-6GHz and millimeter-wave (millimeter-wave) bands. The proposed antenna comprises four concentric pentagonal slots that are uniformly separated from one another. For the sub-6GHz band, the antenna is excited by a single open-end microstrip transmission-line, while a 1 × 8 power divider (PD) connected via a T-junction structure excites the millimeter-wave band. Both the sub-6GHz and mm-wave antennas operate in a MIMO configuration. The proposed antenna design was fabricated on a 120 × 60 mm
substrate with an edge-to-edge distance of 49 mm. The proposed sub-6GHz antenna covers the following frequency bands: 4-4.5 GHz, 3.1-3.8 GHz, 2.48-2.9 GHz, 1.82-2.14 GHz, and 1.4-1.58 GHz, while the millimeter-wave antenna operates at 28 GHz with at least 500 MHz of bandwidth. A complete antenna analysis is provided via a step-by-step design procedure, an equivalent circuit diagram showing the operation of the shared aperture antenna, and current density analysis at both millimeter-wave and sub-6GHz bands. The proposed antenna design is also characterized in terms of MIMO performance metrics with a good MIMO operation with maximum envelop correlation coefficient value of 0.113. The maximum measured gain and efficiency values obtained were 91% and 8.5 dBi over the entire band of operation. The antenna is backward compatible with 4G bands and also encompasses the sub-6GHz and 28 GHz bands for future 5G wireless communcation systems. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s22051808 |