Almost Kenmotsu 3- h -metric as a cotton soliton

PurposeCotton soliton is a newly introduced notion in the field of Riemannian manifolds. The object of this article is to study the properties of this soliton on certain contact metric manifolds.Design/methodology/approachThe authors consider the notion of Cotton soliton on almost Kenmotsu 3-manifol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arab journal of mathematical sciences 2024-07, Vol.30 (2), p.161-170
Hauptverfasser: Dey, Dibakar, Majhi, Pradip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:PurposeCotton soliton is a newly introduced notion in the field of Riemannian manifolds. The object of this article is to study the properties of this soliton on certain contact metric manifolds.Design/methodology/approachThe authors consider the notion of Cotton soliton on almost Kenmotsu 3-manifolds. The authors use a local basis of the manifold that helps to study this notion in terms of partial differential equations.FindingsFirst the authors consider that the potential vector field is pointwise collinear with the Reeb vector field and prove a non-existence of such Cotton soliton. Next the authors assume that the potential vector field is orthogonal to the Reeb vector field. It is proved that such a Cotton soliton on a non-Kenmotsu almost Kenmotsu 3-h-manifold such that the Reeb vector field is an eigen vector of the Ricci operator is steady and the manifold is locally isometric to.Originality/valueThe results of this paper are new and interesting. Also, the Proposition 3.2 will be helpful in further study of this space.
ISSN:1319-5166
2588-9214
DOI:10.1108/AJMS-10-2020-0103