Highly-efficient electrically-driven localized surface plasmon source enabled by resonant inelastic electron tunneling

On-chip plasmonic circuitry offers a promising route to meet the ever-increasing requirement for device density and data bandwidth in information processing. As the key building block, electrically-driven nanoscale plasmonic sources such as nanoLEDs, nanolasers, and nanojunctions have attracted inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-05, Vol.12 (1), p.3111-3111, Article 3111
Hauptverfasser: Qian, Haoliang, Li, Shilong, Hsu, Su-Wen, Chen, Ching-Fu, Tian, Fanglin, Tao, Andrea R., Liu, Zhaowei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:On-chip plasmonic circuitry offers a promising route to meet the ever-increasing requirement for device density and data bandwidth in information processing. As the key building block, electrically-driven nanoscale plasmonic sources such as nanoLEDs, nanolasers, and nanojunctions have attracted intense interest in recent years. Among them, surface plasmon (SP) sources based on inelastic electron tunneling (IET) have been demonstrated as an appealing candidate owing to the ultrafast quantum-mechanical tunneling response and great tunability. However, the major barrier to the demonstrated IET-based SP sources is their low SP excitation efficiency due to the fact that elastic tunneling of electrons is much more efficient than inelastic tunneling. Here, we remove this barrier by introducing resonant inelastic electron tunneling (RIET)—follow a recent theoretical proposal—at the visible/near-infrared (NIR) frequencies and demonstrate highly-efficient electrically-driven SP sources. In our system, RIET is supported by a TiN/Al 2 O 3 metallic quantum well (MQW) heterostructure, while monocrystalline silver nanorods (AgNRs) were used for the SP generation (localized surface plasmons (LSPs)). In principle, this RIET approach can push the external quantum efficiency (EQE) close to unity, opening up a new era of SP sources for not only high-performance plasmonic circuitry, but also advanced optical sensing applications. On-chip circuits based on plasmonic systems are a promising potential technology. Here the authors present efficient, on-chip, localized plasmonic excitation based on resonant inelastic electron tunneling with metallic quantum well junction.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-23512-2