Host-parasite interactions in non-native invasive species are dependent on the levels of standing genetic variation at the immune locus
Parasites may mediate the success of biological invasions through their effect on host fitness and thus, on host population growth and stability. However, a release from the pressure of parasites is strongly related to the genetic differentiation of the host. In invasive host populations, the number...
Gespeichert in:
Veröffentlicht in: | BMC ecology and evolution 2020-04, Vol.20 (1), p.43-43, Article 43 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Parasites may mediate the success of biological invasions through their effect on host fitness and thus, on host population growth and stability. However, a release from the pressure of parasites is strongly related to the genetic differentiation of the host. In invasive host populations, the number of available genetic variants, allowing them to 'fight' the infection, are likely to be influenced by founder events and genetic drift. The level standing genetic variation of invasive populations may be crucial in successfully adapting to new environments and resisting diseases. We studied invasive populations of raccoon that experienced a random reduction in genetic diversity during the establishment and evaluated the relationship between host immune genetic diversity and intestinal parasites infection.
We distinguished two different genetic clusters that are characterized by different sets of functionally relevant MHC-DRB alleles. Both clusters were characterized by considerably different allele-parasite associations and different levels of parasite infection. The specific resistance MHC-DRB alleles explained the lower prevalence of Digenea parasites. An increased infection intensity was related to the presence of two MHC-DRB alleles. One of these alleles significantly decreased in frequency over time, causing a decrease of Digenea abundance in raccoons in consecutive years.
Our findings suggest that intestinal parasites can exert selective pressure on an invasive host with lowered levels of immune genetic diversity and contribute to promoting local adaptation over time. The random genetic drift that created the two different genetic clusters in the invasive raccoon range imposed completely different MHC-parasite associations, strongly associated with the infection status of populations. Our findings underline the role of standing genetic variation in shaping host-parasite relationships and provide empirical support that functional genetic variation may be, at least partly, responsible for differences in the success of invasive populations. |
---|---|
ISSN: | 1471-2148 1471-2148 2730-7182 |
DOI: | 10.1186/s12862-020-01610-x |