Pharmacological drug screening to inhibit uveal melanoma metastatic cells either via EGF-R, MAPK, mTOR or PI3K
AIM: To screen five potential pharmacological substances specifically targeting EGF-R, MAPK, mTOR, or PI3K for their antiproliferative effects, possible impact on cell viability, as well as cell death rates on three different uveal melanoma metastasis cell lines in vitro. METHODS: Three different uv...
Gespeichert in:
Veröffentlicht in: | International journal of ophthalmology 2022-10, Vol.15 (10), p.1569-1576 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | AIM: To screen five potential pharmacological substances specifically targeting EGF-R, MAPK, mTOR, or PI3K for their antiproliferative effects, possible impact on cell viability, as well as cell death rates on three different uveal melanoma metastasis cell lines in vitro.
METHODS: Three different uveal melanoma metastasis cell lines (OMM2.5, OMM2.3, and OMM1), that originated from human hepatic and subcutaneous metastasis, were exposed to inhibitors of different targets: erlotinib (EGF-R), everolimus (mTOR), selumetinib (MAPK), trametinib (MAPK) or the alkylphosphocholine erufosine (PI3K). Cell viability was assessed with a 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) dye reduction assay after 24h of treatment. Antiproliferative effects were evaluated separately after a 72-hour incubation of the cells with the pharmacological substance. Subsequently, the IC50 was calculated. Tumor cell death was investigated using a double stain apoptosis detection assay.
RESULTS: Selumetinib, trametinib, and erufosine significantly decreased cell viability of all OMM cell lines (P |
---|---|
ISSN: | 2222-3959 2227-4898 |
DOI: | 10.18240/ijo.2022.10.02 |