Study of the Dynamic Adaptive Calculation Method for River Water Environmental Capacity

Controlling the total amount of river pollutant discharge is an important means of water resource protection and management, and it is also a necessary condition for ensuring the normal functioning of water areas. The total amount of pollutant discharge is closely related to the water environmental...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2024-10, Vol.14 (19), p.9082
Hauptverfasser: Gao, Yating, Wei, Na, Xie, Jiancang, Liang, Jichao, Gao, Fei, Zhou, Guixing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Controlling the total amount of river pollutant discharge is an important means of water resource protection and management, and it is also a necessary condition for ensuring the normal functioning of water areas. The total amount of pollutant discharge is closely related to the water environmental capacity (WEC). Shifting from the traditional method of calculating WEC to dynamic analyses and calculations, concerning practical applications, in this paper, a dynamic adaptive calculation method is proposed for the river WEC that considers the changes in adaptive demand and hydrological conditions. In this method, the dynamic WEC is represented by intervals based on dynamic changes in different spatial and temporal scales, various calculation methods, hydrological conditions, and parameters. According to the calculation results for the WEC, a variable interval was formed. Taking the Shaanxi section of the main stream of the Wei River as the research object, with the support of an integrated platform, the dynamic adaptive calculation of the WEC in the Shaanxi section of the Wei River was realized, and a corresponding simulation system was constructed. The verification results show that (1) the dynamic calculation of WEC can be realized by freely combining different model methods and calculation conditions; (2) the WEC is described using a variable interval, which has strong applicability and operability; and (3) the simulation system can quickly adapt to the changing needs of practical applications and provide managers with visual and credible decision support. The research results provide a theoretical basis for river water environment pollution prevention and environmental management decision-making and help in the high-quality development of the river basin.
ISSN:2076-3417
2076-3417
DOI:10.3390/app14199082