Navel Orange Maturity Classification by Multispectral Indexes Based on Hyperspectral Diffuse Transmittance Imaging

Maturity grading is important for the quality of fruits. Nondestructive maturity detection can be greatly beneficial to the consumer and fruit industry. In this paper, a hyperspectral image of navel oranges was obtained using a diffuse transmittance imaging based system. Multispectral indexes were b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of food quality 2017-01, Vol.2017 (2017), p.1-7
Hauptverfasser: Jie, Deng-Fei, Ye, Da-Peng, He, Jin-Cheng, Wei, Xuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Maturity grading is important for the quality of fruits. Nondestructive maturity detection can be greatly beneficial to the consumer and fruit industry. In this paper, a hyperspectral image of navel oranges was obtained using a diffuse transmittance imaging based system. Multispectral indexes were built to identify the maturity with the hyperspectral technique. Five indexes were proposed to combine the spectra at wavelengths of 640, 760 nm (red edges), and 670 nm (for chlorophyll content) to grade the navel oranges into three maturity stages. The index of (T670+T760-T640)/(T670+T760+T640) seemed to be more appropriate to classify maturity, especially to distinguish immature oranges that can be straightly identified in accordance with the value of this index ((T670+T760-T640)/(T670+T760+T640)). Different indexes were used as the input of linear discriminate analysis (LDA) and of k-nearest neighbor (k-NN) algorithm to identify the maturity, and it was found that k-NN with (T670+T760-T640)/(T670+T760+T640) could reach the highest correct classification rate of 96.0%. The results showed that the built index was feasible and accurate in the nondestructive classification of oranges based on the hyperspectral diffuse transmittance imaging. It will greatly help to develop low-cost and real-time multispectral imaging systems for the nondestructive detection of fruit quality in the industry.
ISSN:0146-9428
1745-4557
DOI:10.1155/2017/1023498