Numerical homogenization of the viscoplastic behavior of snow based on X-ray tomography images
While the homogenization of snow elastic properties has been widely reported in the literature, homogeneous rate-dependent behavior responsible for the densification of the snowpack has hardly ever been upscaled from snow microstructure. We therefore adapt homogenization techniques developed within...
Gespeichert in:
Veröffentlicht in: | The cryosphere 2017-06, Vol.11 (3), p.1465-1485 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | While the homogenization of snow elastic properties has been widely reported in the literature, homogeneous rate-dependent behavior responsible for the densification of the snowpack has hardly ever been upscaled from snow microstructure. We therefore adapt homogenization techniques developed within the framework of elasticity to the study of snow viscoplastic behavior. Based on the definition of kinematically uniform boundary conditions, homogenization problems are applied to 3-D images obtained from X-ray tomography, and the mechanical response of snow samples is explored for several densities. We propose an original post-processing approach in terms of viscous dissipated powers in order to formulate snow macroscopic behavior. Then, we show that Abouaf models are able to capture snow viscoplastic behavior and we formulate a homogenized constitutive equation based on a density parametrization. Eventually, we demonstrate the ability of the proposed models to account for the macroscopic mechanical response of snow for classical laboratory tests. |
---|---|
ISSN: | 1994-0424 1994-0416 1994-0424 1994-0416 |
DOI: | 10.5194/tc-11-1465-2017 |