Open-cell mullite ceramic foams derived from porous geopolymer precursors with tailored porosity

Porous geopolymer precursors were firstly prepared by the direct foaming method using bauxite, fly ash (FA), and metakaolin (MK) as raw materials, and porous mullite ceramics were prepared after ammonium ion exchange and then high-temperature sintering. The effects of chemical foaming agent concentr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of advanced ceramics 2023-02, Vol.12 (2), p.279-295
Hauptverfasser: Shao, Jiahuan, Bai, Chengying, Li, Xinyu, Yang, Kun, Zheng, Ting, Qiao, Yingjie, Zhang, Lili, Li, Hongqiang, Colombo, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Porous geopolymer precursors were firstly prepared by the direct foaming method using bauxite, fly ash (FA), and metakaolin (MK) as raw materials, and porous mullite ceramics were prepared after ammonium ion exchange and then high-temperature sintering. The effects of chemical foaming agent concentration, ion-exchange time, and sintering temperature on porous geopolymer-derived mullite ceramics were studied, and the optimal preparation parameters were found. Studies have shown that the concentration of blowing agent had great influence on open porosity (q) and porosity and cell size distributions of geopolymer samples, which in turn affected their compressive strength (σ). Duration of the ion exchange had no obvious effect on the sintered samples, and the amount of mullite phase increased with the increase in the sintering temperature. Mullite foams, possessing an open-celled porous structure, closely resembling that of the starting porous geopolymers produced by directly foaming, were obtained by firing at high temperatures. Stable mullite (3Al2O3·2SiO2) ceramic foams with total porosity (ε) of 83.52 vol%, high open porosity of 83.23 vol%, and compressive strength of 1.72 MPa were produced after sintering at 1400 ℃ for 2 h in air without adding any sintering additives using commercial MK, bauxite, and FA as raw materials.
ISSN:2226-4108
2227-8508
DOI:10.26599/JAC.2023.9220682